Cours de bases de données, http://sql.bdpedia.fr

La normalisation relationnelle

La normalisation

La normalisation, c'est l'art de créer des schémas relationnels où toutes les relations sont en troisième forme normale, et sans perte d'information.

Dans cette session:

- Exemple de décomposition d'un schéma
- Algorithme de normalisation
- Approche globale

Ces diapositives correspondent au support en ligne disponible sur le site http://sql.bdpedia.fr/

Point de départ : relation globale et dépendances

On part d'un schéma contenant tous les attributs connus.

Appart(idAppart, surface, idImmeuble, nbEtages, dateConstruction)

On identifie les dépendances fonctionnelles

 $idAppart \rightarrow surface, idImmeuble, nbEtages, dateConstruction$

et

idImmeuble
ightarrow nbEtages, dateConstruction

Remarque: En troisième forme normale?

Non, car la seconde DF montre une dépendance dont la partie gauche n'est pas la clé, idAppart.

La décomposition

On identifie les dépendances fonctionnelles minimales et directes.

$$idAppart \rightarrow surface, idImmeuble$$

et

$$idImmeuble \rightarrow nbEtages, dateConstruction$$

On crée une relation pour chacune :

- Appart(idAppart, surface, idImmeuble)
- Immeuble (idImmeuble, nbEtages, dateConstruction)

On obtient des relations en 3FN, sans perte d'information.

Regardons les occupants

Le schéma global de départ est le suivant :

Occupant(idPersonne, nom, prénom, idAppart, surface)

On a les dépendances suivantes :

 $idAppart \rightarrow surface$

et

 $idPersonne \rightarrow pr\'enom, nom$

La clé est la paire (idPersonne, idAppart).

Remarque: En troisième forme normale?

Non, car pour les deux DF, la partie gauche n'est pas la clé

La décomposition

Comme avant, à partir des DF minimales et directes.

- Personne(idPersonne, prénom, nom)
- Appart (idAppart, surface)

Pas suffisant, car on a perdu le lien entre les appartements et les personnes.

On ajoute une relation avec la clé.

Occupant (idPersonne, idAppart)

On est en 3FN, sans perte d'information (jointures pour reconstituer)

Algorithme de normalisation

On part d'un schéma de relation R global et d'un ensemble de dépendances fonctionnelles minimales et directes.

On détermine alors les clés de R

- Pour chaque DF minimale et directe $X \to A_1 \cdots, A_n$, on crée une relation $(X, A_1 \cdots, A_n)$ de clé X
- Pour chaque clé C non représentée dans une des relations précédentes, on crée une relation (C) de clé C.

On obtient un schéma normalisé

Et en pratique?

Pas tout à fait suffisant : les identifiants n'existent pas naturellement dans la vraie vie...

(titre, année, prénomMES, nomMES, annéeNaiss)

Pas de DF... Il faut les ajouter et décidant des entités et de leur identifiant. Ici, entités Film et Réalisateur, avec idFilm et idRéalisateur. Soit :

(idFilm, titre, ann'ee, idR'ealisateur, pr'enomMES, nomMES, ann'eeNaiss)

avec

 $idR\'{e}alisateur
ightarrow pr\'{e}nomMES, nomMES, ann\'{e}eNaiss$

et

 $idFilm \rightarrow titre, année, idRéalisateur$

Maintenant on normalise et on obtient un schéma en 3FN.

Illustration : table de départ

À partir de cette table pleine d'anomalies.

idFilm	titre	année	idRéalisateur	nomMES	prénomMES	annéeNaiss
1	Alien	1979	101	Scott	Ridley	1943
2	Vertigo	1958	102	Hitchcock	Alfred	1899
3	Psychose	1960	102	Hitchcock	Alfred	1899
4	Kagemusha	1980	103	Kurosawa	Akira	1910
5	Volte-face	1997	104	Woo	John	1946
6	Pulp Fiction	1995	105	Tarantino	Quentin	1963
7	Titanic	1997	106	Cameron	James	1954
8	Sacrifice	1986	107	Tarkovski	Andrei	1932

On obtient après normalisation

idFil	m titre	année	idR					
1	Alien	1979	101	idR	nom	prénom	annéeNaiss	
2	Vertigo	1958	102	101	Scott	Ridley	1943	
3	Psychose	1960	102	102	Hitchcock	Alfred	1899	
4	Kagemusha	1980	103	103	Kurosawa	Akira	1910	
5	Volte-face	1997	104	104	Woo	John	1946	
6	Pulp Fiction	1995	105	105	Tarantino	Quentin	1963	
7	Titanic	1997	106	106	Cameron	James	1954	
8	Sacrifice	1986	107	107	Tarkovski	Andrei	1932	
La table des films				la	La table des réalisateurs			

Schéma normalisé et sans perte d'information

À retenir

Il est toujours possible de se ramener à un schéma normalisé.

- En déterminant les DF et les clés
- En appliquant l'algorithme de normalisation

En pratique : les DF ne sont pas données naturellement. Il faut les déterminer par un processus de conception basé sur les entités et leurs identifiants.

Démarche globale : conception entité / association, suivie de la normalisation.